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Abstrnct. Attention is drawn to difficulties associated with gravitational theories based on 
Lagrangians formed from quadratic invariants of the Riemann tensor, and in particular with 
the Palatini variational method used by Yang in a gauge theory of gravitation. It is pointed 
out that the Yang theory is not mathematically well founded. 

1. Introduction 

In a recent paper Fairchild (1976) has attempted to develop a gauge theory of 
gravitation based on the recent work of Yang (1974) which, in turn, employs a 
variational principle discussed by the present author some years ago (see Stephenson 
1958). The purpose of this paper is to draw attention to the difficulties associated with 
the particular type of variation used, and to point to other difficulties inherent in the 
Stephenson-Yang theory (as it is referred to by Fairchild). 

There are two basic ways of obtaining field equations from a variational principle, 
referred to by Buchdahl(l960) as the g-variation and P-variation methods. We now 
examine each of these in turn. 

2. g-variations 

In this approach we consider a Riemann space in which the connection is the Christoffel 
connection formed from the metric tensor giK. The Lagrangian L, which is constructed 
the principle SI L F g  d7 = 0, where the variation is with respect to the glK. In the 
case when L = R, where R is the scalar curvature, we obtain the fieid equations 
RiK -$giKR = 0 of general relativity. g-variations of Lagrangians formed from quadra- 
tic invariants of the Riemann tensor and its contractions have been studied extensively 
by many authors for various reasons since the early days of relativity. It is not 
appropriate to give a survey of the subject here, but the work is associated with the 
names of Eddington, Weyl, Pauli, Lanczos, Gregory, Buchdahl and many others (for 
detailed references and further work, see Stephenson 1958, 1969, Lovelock 1970, and 
Bicknell 1974). Much of this effort has been directed towards developing alternative 
field equations for the gravitational field, and also towards trying to obtain a unification 
of the gravitational and electromagnetic fields. In recent years, the question of the 
quantization of the gravitational field has attracted interest in quadratic Lagrangians 
and the work of DeWitt (1964, 1967, 1975) is especially relevant. It is well known that 
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as far as the quantization of the weak field approximation of the general relativity field 
equations is concerned the theory is not renormalizable by the ordinary techniques of 
quantum field theory. The inclusion of quadratic invariants of the Riemann tensor in 
the Lagrangian for the gravitational field may improve the situation, but the physical 
interpretation of such Lagrangians is not clear. (For a survey of this problem the reader 
should also consult Salam (1971), Deser and Vanieuwenhuyzen (1974), and Isham eta1 
(1975).) 

Leaving aside for the moment the motivation for discussing quadratic Lagrangians, 
we now come to two particular mathematical results which are relevant here. We define 

Then Lanczos (1938) has shown that only two of these three integrals are independent 
under g-variations in a four-dimensional space and that 

6(I1-4Iz+IJ=O. (2) 

Furthermore, it is important to realize that the field equations obtained from these three 
variational principles are all fourth-order partial differential equations for the g,,, 
unlike the field equations of general relativity which are second order. Using Lanczos's 
result, the field equations obtained from a linear combination of the three quadratic 
Lagrangians (1) may therefore be derived from a Lagrangian which is just a linear 
combination of R 2  and RiKRiK, and Bicknell(l974) has discussed fully the implications 
of taking such a Lagrangian as a basis for a theory of gravitation alone. His conclusions 
are that the field equations based on R 2  possess physically acceptable solutions, but that 
when a matter or source field is introduced into the Lagrangian the results differ widely 
from those predicted by general relativity. Purely quadratic Lagrangians, he concludes, 
are not suitable for constructing viable theories of gravitation. The fact that in the 
absence of a source field in the Lagrangian the field equations obtained from 
S R 2G d r  = 0 are physically acceptable is part of a general result obtained earlier 
(see Stephenson 1969). For suppose we consider some function of the scalar curvature, 
F(R),  and consider the g-variation of 

6 / F(R)&dr = 0. (3) 

We can now ask what conditions the function F has to satisfy in order th& the field 
equations so obtained are satisfied by the empty space field equations Ri, = 0 of general 
relativity. At least in this way we shall guarantee that the generalized field equations 
will contain the physically significant solutions of conventional gravitational theory. 
The result obtained is that F ( R )  should be a function of class C3 at least and that 
F(0)  = 0. For example, S 5 (sin R ) G d r  = 0 will lead to field equations which are 
satisfied by RiK = 0 since sin R is c" and sin 0 = 0. However, 6 e R f i d r  = 0 does not 
satisfy the conditions. It is now clear why S j R 2 e d T = 0 ,  and indeed 
S R " 6 d r  = 0 ( n  3 2) yield field equations which are satisfied by Ri, = 0. However, 
the objections to quadratic Lagrangians combined with a matter Lagrangian as raised 
by Bicknell(l974) still remain. To overcome these objections it would seem necessary 
to include the linear term R in the Lagrangian. As far as is known, there appears to be 
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no basic objection to a theory based on the g-variation of 

S (aR +@R2+ yRi ,R iK)Gd . r  = 0, (4) 

where a, /3 and y are suitably chosen constants. The difficulty here may be that there 
exist a number of non-physical type solutions and this possibility has been discussed by 
Buchdahl(1962), Thompson (1975a,b), Pavelle (1975) and Fairchild (1976) in relation 
to various theories. 

3. P-variations 

We now come to the method of variation due to Palatini (1919). In this case the space at 
the outset is not assumed to be Riemannian and the metric tensor gi, and the affine 
connection r;, (assumed symmetric) are varied independently. P-variations of the 
three quadratic Lagrangians R2, Ri,R i K ,  R ;KIRpl have been discussed (see Stephenson 
1958, 1959, 1960 and Buchdahl 1960). The field equations fall into two sets-one set 
from the variation with respect to the gi, and the other from the variation with respect to 
the r;,. Now Yang (1974) in attempting to set up a gauge theory of gravitation took just 
one set of the field equations obtained from the P-variation of S J R'i,lR,i"'Gd.r = 0 
and ignored the other set (namely that obtained from the variation with respect to the 
r;,). AparPfrom this lack of consistency, observed also by Fairchild (1976), the 
P-variation method has been severely and properly criticized by Buchdahl(l960) (see 
also Stephenson 1959). It is only for the linear Lagrangian R that the g-variation and 
the P-variation methods lead to the same field equations. In all other cases the results 
are different, and as Buchdahl has shown lead to most strange results-so much so that 
the technique must be regarded as unsuitable as a basis for a physical theory. One 
example given by Buchdahl will suffice to illustrate the type of difficulty which can arise: 
if L = RiKRiK then the field equations in a V, are found to be 

RisRS* + RsiRKS -4 SYRs$sP = 0 ( R ' G ) ; ,  = 0, ( 5 )  
where the semicolon denotes covariant differentiation with respect to the symmetric 
connection r;,. These two sets of equations are satisfied by any set of 40 functions r;, 
which make Ri, vanish. The gi, remain arbitrary and undetermined. Another objec- 
tion to the P-variation method as applied to quadratic Lagrangians is founded on the 
Weyl gauge group in which gi, + q5(xs)giK, rfK+ rf,, where q5(xs)  is an arbitrary function 
of the coordinates. The quadratic Lagrangian densities R 2 c g ,  Ri,R i K c g ,  
R ' j , l R p ' c g  are all invariant under these gauge transformations (see Stephenson 
1960) and as a consequence of this extra invariance the field equations derived from the 
g,, part of the variation have vanishing trace (see, for example, the first set of equations 
in ( 5 ) ) .  This presents a problem, even allowing for the strange properties noted by 
Buchdahl, since if one wishes to include a matter Lagrangian in the usual way then it too 
would have to have zero trace. Such a restriction is physically unacceptable. 

4. Conclusion 

The aim of this short paper has been to point out certain difficulties associated with 
theories based on variational principles. It has not been possible, nor considered 
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desirable, to give a complete survey of the field, and consequently many references to 
the work of other authors have necessarily been omitted. 

To summarize, it does seem that in order to obtain a satisfactory set of field 
equations via the g-variation method the linear term R must be included in the 
Lagrangian, and that no clear prescription for including quadratic terms is available 
either from classical or quantum arguments. However, we see that the P-variation 
method applied to quadratic Lagrangians is highly dubious, and further that the Yang 
theory is mathematically inconsistent, based as it is on only one set of the relevant field 
equations obtained from a P-variational principle. P-variations should be used with 
extreme caution on any Lagrangian other than R.  

Acknowledgments 

The author is grateful to Dr J C Taylor and D J Rowan for helpful discussions of this 
paper, and also to Professor R J Elliott for the hospitality shown to me during my stay in 
the Department of Theoretical Physics, University of Oxford, where this work was 
carried out. 

References 

Bicknell G V 1974 J. Phys. A :  Math., Nucl. Gen. 7 1061 
Buchdahl H A 1960 Proc. Camb. Phil. Soc. 56 396 
- 1962 Nuouo Cim. 123 141 
Deser S and Vanieuwenhuyzen P 1974 Phys. Rev. D 10 401,411 
DeWitt B S 1964 Relativity, Groups and Topology (New York: Gordon and Breach) 
~ 1967 Phys. Rev. 162 1195, 1239 
- 1975 Phys. Rep. 19 295 
Fairchild E E 1976 Phys. Rev. D 14 384 
Isham C J, Penrose R and Sciama D W 1975 Quanrum Gravity (London: Oxford University Press) 
Lanczos C 1938 Ann. Math., NY 39 842 
Lovelock D 1970 Archs Ration. Mech. Analysis 36 293 
Palatini A 1919 Rc. Circ. Mat. Palermo 43 203 
Pavelle R i975 Phys. Rev. Lett. 34 11 14 
Salam A 1971 Proc. Coral Gables Conf. on Fundamental Interactions at High Energies vol4, eds M Dal Cin, 

Stephenson G 1958 Nuovo Cim. 9 263 
- 1959 Roc. Camb. Phil. Soc. 55 375 
- 1960 Proc. Camb. Phil. Soc. 56 247 
- 1969 Lett. Nuovo Cim. 197 
Thompson A H 1975a Phys. Rev. Lett. 34 507 
- 1975b Phys. Rev. Lett. 35 320 
Yang C N 1974 Phys. Rev. Lett. 33 445 

G J Iverson and A Perlmutter (London: Gordon and Breach) 


